A prediction model for differential resilience to the effects of combat-related stressors in US Army soldiers

Abstract: Objectives: To develop a composite score for differential resilience to effects of combat-related stressors (CRS) on persistent DSM-IV post-traumatic stress disorder (PTSD) among US Army combat arms soldiers using survey data collected before deployment. Methods: A sample of n = 2542 US Army combat arms soldiers completed a survey shortly before deployment to Afghanistan and then again two to three and 8-9 months after redeployment. Retrospective self-reports were obtained about CRS. Precision treatment methods were used to determine whether differential resilience to persistent PTSD in the follow-up surveys could be developed from pre-deployment survey data in a 60% training sample and validated in a 40% test sample. Results: 40.8% of respondents experienced high CRS and 5.4% developed persistent PTSD. Significant test sample heterogeneity was found in resilience (t = 2.1, p = 0.032), with average treatment effect (ATE) of high CRS in the 20% least resilient soldiers of 17.1% (SE = 5.5%) compared to ATE = 3.8% (SE = 1.2%) in the remaining 80%. The most important predictors involved recent and lifetime pre-deployment distress disorders. Conclusions: A reliable pre-deployment resilience score can be constructed to predict variation in the effects of high CRS on persistent PTSD among combat arms soldiers. Such a score could be used to target preventive interventions to reduce PTSD or other resilience-related outcomes.

Read the full article
Report a problem with this article

Related articles

  • More for Researchers

    Identifying opioid relapse during COVID-19 using natural language processing of nationwide Veterans Health Administration electronic medical record data

    Abstract: Novel and automated means of opioid use and relapse risk detection are needed. Unstructured electronic medical record data, including written progress notes, can be mined for clinically relevant information, including the presence of substance use and relapse-critical markers of risk and recovery from opioid use disorder (OUD). In this study, we used natural language processing (NLP) to automate the extraction of opioid relapses, and the timing of these occurrences, from veteran patients' electronic medical record. We then demonstrated the utility of our NLP tool via analysis of pre-/post-COVID-19 opioid relapse trends among veterans with OUD. For this demonstration, we analyzed data from 107,606 veterans OUD enrolled in Veterans Health Administration, comparing a pandemic-exposed cohort (n = 53,803; January 2019-March 2021) to a matched prepandemic cohort (n = 53,803; October 2017-December 2019). The recall of our NLP tool was 75% and our precision was 94%, demonstrating moderate sensitivity and excellent specificity. Using the NLP tool, we found that the odds of opioid relapse postpandemic onset were proportionally higher compared to prepandemic trends, despite patients having fewer mental health encounters from which to derive instances of relapse postpandemic onset. In this research application of the tool, and as hypothesized, we found that opioid relapse risk was elevated postpandemic. The application of NLP Methods: to identify and monitor relapse risk holds promise for future surveillance, risk prevention, and clinical outcome research.