Metformin prescription for U.S. Veterans with prediabetes, 2010-2019

Abstract: Affecting an estimated 88 million Americans, prediabetes increases the risk for developing type 2 diabetes mellitus (T2DM), and independently, cardiovascular disease, retinopathy, nephropathy, and neuropathy. Nevertheless, little is known about the use of metformin for diabetes prevention among patients in the Veterans Health Administration, the largest integrated healthcare system in the U.S. This is a retrospective observational cohort study of the proportion of Veterans with incident prediabetes who were prescribed metformin at the Veterans Health Administration from October 2010 to September 2019. Among 1,059,605 Veterans with incident prediabetes, 12,009 (1.1%) were prescribed metformin during an average 3.4 years of observation after diagnosis. Metformin prescribing was marginally higher (1.6%) among those with body mass index (BMI) ≥35 kg/m(2), age <60 years, HbA(1c)≥6.0%, or those with a history of gestational diabetes, all subgroups at a higher risk for progression to T2DM. In a multivariable model, metformin was more likely to be prescribed for those with BMI ≥35 kg/m(2) incidence rate ratio [IRR] 2.6 [95% confidence intervals (CI): 2.1-3.3], female sex IRR, 2.4 [95% CI: 1.8-3.3], HbA(1c)≥6% IRR, 1.93 [95% CI: 1.5-2.4], age <60 years IRR, 1.7 [95% CI: 1.3-2.3], hypertriglyceridemia IRR, 1.5 [95% CI: 1.2-1.9], hypertension IRR, 1.5 [95% CI: 1.1-2.1], Major Depressive Disorder IRR, 1.5 [95% CI: 1.1-2.0], or schizophrenia IRR, 2.1 [95% CI: 1.2-3.8]. Over 20% of Veterans with prediabetes attended a comprehensive structured lifestyle modification clinic or program. Among Veterans with prediabetes, metformin was prescribed to 1.1% overall, a proportion that marginally increased to 1.6% in the subset of individuals at highest risk for progression to T2DM.

Read the full article
Report a problem with this article

Related articles

  • More for Researchers

    Identifying opioid relapse during COVID-19 using natural language processing of nationwide Veterans Health Administration electronic medical record data

    Abstract: Novel and automated means of opioid use and relapse risk detection are needed. Unstructured electronic medical record data, including written progress notes, can be mined for clinically relevant information, including the presence of substance use and relapse-critical markers of risk and recovery from opioid use disorder (OUD). In this study, we used natural language processing (NLP) to automate the extraction of opioid relapses, and the timing of these occurrences, from veteran patients' electronic medical record. We then demonstrated the utility of our NLP tool via analysis of pre-/post-COVID-19 opioid relapse trends among veterans with OUD. For this demonstration, we analyzed data from 107,606 veterans OUD enrolled in Veterans Health Administration, comparing a pandemic-exposed cohort (n = 53,803; January 2019-March 2021) to a matched prepandemic cohort (n = 53,803; October 2017-December 2019). The recall of our NLP tool was 75% and our precision was 94%, demonstrating moderate sensitivity and excellent specificity. Using the NLP tool, we found that the odds of opioid relapse postpandemic onset were proportionally higher compared to prepandemic trends, despite patients having fewer mental health encounters from which to derive instances of relapse postpandemic onset. In this research application of the tool, and as hypothesized, we found that opioid relapse risk was elevated postpandemic. The application of NLP Methods: to identify and monitor relapse risk holds promise for future surveillance, risk prevention, and clinical outcome research.