Insomnia and early incident atrial fibrillation: a 16-year cohort study of younger men and women veterans

Abstract: Background: There is growing consideration of sleep disturbances and disorders in early cardiovascular risk, including atrial fibrillation (AF). Obstructive sleep apnea confers risk for AF but is highly comorbid with insomnia, another common sleep disorder. We sought to first determine the association of insomnia and early incident AF risk, and second, to determine if AF onset is earlier among those with insomnia. Methods and Results: This retrospective analysis used electronic health records from a cohort study of US veterans who were discharged from military service since October 1, 2001 (ie, post-9/11) and received Veterans Health Administration care, 2001 to 2017. Time-varying, multivariate Cox proportional hazard models were used to examine the independent contribution of insomnia diagnosis to AF incidence while serially adjusting for demographics, lifestyle factors, clinical comorbidities including obstructive sleep apnea and psychiatric disorders, and health care utilization. Overall, 1 063 723 post-9/11 veterans (Mean age=28.2 years, 14% women) were followed for 10 years on average. There were 4168 cases of AF (0.42/1000 person-years). Insomnia was associated with a 32% greater adjusted risk of AF (95% CI, 1.21-1.43), and veterans with insomnia showed AF onset up to 2 years earlier. Insomnia-AF associations were similar after accounting for health care utilization (adjusted hazard ratio [aHR], 1.27 [95% CI, 1.17-1.39]), excluding veterans with obstructive sleep apnea (aHR, 1.38 [95% CI, 1.24-1.53]), and among those with a sleep study (aHR, 1.26 [95% CI, 1.07-1.50]). Conclusions: In younger adults, insomnia was independently associated with incident AF. Additional studies should determine if this association differs by sex and if behavioral or pharmacological treatment for insomnia attenuates AF risk.

Read the full article
Report a problem with this article

Related articles

  • More for Researchers

    Identifying opioid relapse during COVID-19 using natural language processing of nationwide Veterans Health Administration electronic medical record data

    Abstract: Novel and automated means of opioid use and relapse risk detection are needed. Unstructured electronic medical record data, including written progress notes, can be mined for clinically relevant information, including the presence of substance use and relapse-critical markers of risk and recovery from opioid use disorder (OUD). In this study, we used natural language processing (NLP) to automate the extraction of opioid relapses, and the timing of these occurrences, from veteran patients' electronic medical record. We then demonstrated the utility of our NLP tool via analysis of pre-/post-COVID-19 opioid relapse trends among veterans with OUD. For this demonstration, we analyzed data from 107,606 veterans OUD enrolled in Veterans Health Administration, comparing a pandemic-exposed cohort (n = 53,803; January 2019-March 2021) to a matched prepandemic cohort (n = 53,803; October 2017-December 2019). The recall of our NLP tool was 75% and our precision was 94%, demonstrating moderate sensitivity and excellent specificity. Using the NLP tool, we found that the odds of opioid relapse postpandemic onset were proportionally higher compared to prepandemic trends, despite patients having fewer mental health encounters from which to derive instances of relapse postpandemic onset. In this research application of the tool, and as hypothesized, we found that opioid relapse risk was elevated postpandemic. The application of NLP Methods: to identify and monitor relapse risk holds promise for future surveillance, risk prevention, and clinical outcome research.