Virtual Reality-Based Treatment for Military Members and Veterans With Combat-Related Posttraumatic Stress Disorder: Protocol for a Multimodular Motion-Assisted Memory Desensitization and Reconsolidation Randomized Controlled Trial

Abstract: Background:Military members are at elevated risk of operational stress injuries, including posttraumatic stress disorder (PTSD) and moral injury. Although psychotherapy can reduce symptoms, some military members may experience treatment-resistant PTSD. Multimodular motion-assisted memory desensitization and reconsolidation (3MDR) has been introduced as a virtual reality (VR) intervention for military members with PTSD related to military service. The 3MDR intervention incorporates exposure therapy, psychotherapy, eye movement desensitization and reconsolidation, VR, supportive counselling, and treadmill walking Objective:The objective of this study is to investigate whether 3MDR reduces PTSD symptoms among military members with combat-related treatment-resistant PTSD (TR-PTSD); examine the technology acceptance and usability of the Computer Assisted Rehabilitation ENvironment (CAREN) and 3MDR interventions by Canadian Armed Forces service members (CAF-SMs), veterans, 3MDR clinicians, and operators; and evaluate the impact on clinicians and operators of delivering 3MDR. Methods:This is a mixed-methods waitlist controlled crossover design randomized controlled trial. Participants include both CAF-SMs and veterans (N=40) aged 18-60 years with combat-related TR-PTSD (unsuccessful experience of at least 2 evidence-based trauma treatments). Participants will also include clinicians and operators (N=12) who have been trained in 3MDR and subsequently utilized this intervention with patients. CAF-SMs and veterans will receive 6 weekly 90-minute 3MDR sessions. Quantitative and qualitative data will be collected at baseline and at 1, 3, and 6 months postintervention. Quantitative data collection will include multiomic biomarkers (ie, blood and salivary proteomic and genomic profiles of neuroendocrine, immune-inflammatory mediators, and microRNA), eye tracking, electroencephalography, and physiological data. Data from outcome measures will capture self-reported symptoms of PTSD, moral injury, resilience, and technology acceptance and usability. Qualitative data will be collected from audiovisual recordings of 3MDR sessions and semistructured interviews. Data analysis will include univariate and multivariate approaches, and thematic analysis of treatment sessions and interviews. Machine learning analysis will be included to develop models for the prediction of diagnosis, symptom severity, and treatment outcomes. Results:This study commenced in April 2019 and is planned to conclude in April 2021. Study results will guide the further evolution and utilization of 3MDR for military members with TR-PTSD and will have utility in treating other trauma-affected populations. Conclusions:The goal of this study is to utilize qualitative and quantitative primary and secondary outcomes to provide evidence for the effectiveness and feasibility of 3MDR for treating CAF-SMs and veterans with combat-related TR-PTSD. The results will inform a full-scale clinical trial and stimulate development and adaptation of the protocol to mobile VR apps in supervised clinical settings. This study will add to knowledge of the clinical effectiveness of 3MDR, and provide the first comprehensive analysis of biomarkers, technology acceptance and usability, moral injury, resilience, and the experience of clinicians and operators delivering 3MDR.

Read the full article
Report a problem with this article

Related articles

  • More for Researchers

    Identifying opioid relapse during COVID-19 using natural language processing of nationwide Veterans Health Administration electronic medical record data

    Abstract: Novel and automated means of opioid use and relapse risk detection are needed. Unstructured electronic medical record data, including written progress notes, can be mined for clinically relevant information, including the presence of substance use and relapse-critical markers of risk and recovery from opioid use disorder (OUD). In this study, we used natural language processing (NLP) to automate the extraction of opioid relapses, and the timing of these occurrences, from veteran patients' electronic medical record. We then demonstrated the utility of our NLP tool via analysis of pre-/post-COVID-19 opioid relapse trends among veterans with OUD. For this demonstration, we analyzed data from 107,606 veterans OUD enrolled in Veterans Health Administration, comparing a pandemic-exposed cohort (n = 53,803; January 2019-March 2021) to a matched prepandemic cohort (n = 53,803; October 2017-December 2019). The recall of our NLP tool was 75% and our precision was 94%, demonstrating moderate sensitivity and excellent specificity. Using the NLP tool, we found that the odds of opioid relapse postpandemic onset were proportionally higher compared to prepandemic trends, despite patients having fewer mental health encounters from which to derive instances of relapse postpandemic onset. In this research application of the tool, and as hypothesized, we found that opioid relapse risk was elevated postpandemic. The application of NLP Methods: to identify and monitor relapse risk holds promise for future surveillance, risk prevention, and clinical outcome research.